تحقیق بهينه سازي و معرفي انواع مختلف روشهاي آن 29 ص
دسته بندي :
دانش آموزی و دانشجویی »
دانلود تحقیق
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 32 صفحه
قسمتی از متن word (..doc) :
2
1
بهينهسازي و معرفي انواع مختلف روشهای آن
2
2
چكيده
بهينهسازي يك فعاليت مهم و تعيينكننده در طراحي ساختاري است. طراحان زماني قادر خواهند بود طرحهاي بهتري توليد كنند كه بتوانند با روشهاي بهينهسازي در صرف زمان و هزينه طراحي صرفهجويي نمايند. بسياري از مسائل بهينهسازي در مهندسي، طبيعتاً پيچيدهتر و مشكلتر از آن هستند كه با روشهاي مرسوم بهينهسازي نظير روش برنامهريزي رياضي و نظاير آن قابل حل باشند. بهينهسازي تركيبي (Combinational Optimization)، جستجو براي يافتن نقطه بهينه توابع با متغيرهاي گسسته (Discrete Variables) ميباشد. امروزه بسياري از مسائل بهينهسازي تركيبي كه اغلب از جمله مسائل با درجه غير چندجملهاي (NP-Hard) هستند، به صورت تقريبي با كامپيوترهاي موجود قابل حل ميباشند. از جمله راهحلهاي موجود در برخورد با اين گونه مسائل، استفاده از الگوريتمهاي تقريبي يا ابتكاري است. اين الگوريتمها تضميني نميدهند كه جواب به دست آمده بهينه باشد و تنها با صرف زمان بسيار ميتوان جواب نسبتاً دقيقي به دست آورد و در حقيقت بسته به زمان صرف شده، دقت جواب تغيير ميكند.
2
3
مقدمه
هدف از بهينهسازي يافتن بهترين جواب قابل قبول، با توجه به محدوديتها و نيازهاي مسأله است. براي يك مسأله، ممكن است جوابهاي مختلفي موجود باشد كه براي مقايسه آنها و انتخاب جواب بهينه، تابعي به نام تابع هدف تعريف ميشود. انتخاب اين تابع به طبيعت مسأله وابسته است. به عنوان مثال، زمان سفر يا هزينه از جمله اهداف رايج بهينهسازي شبكههاي حمل و نقل ميباشد. به هر حال، انتخاب تابع هدف مناسب يكي از مهمترين گامهاي بهينهسازي است. گاهي در بهينهسازي چند هدف به طور همزمان مد نظر قرار ميگيرد؛ اين گونه مسائل بهينهسازي را كه دربرگيرنده چند تابع هدف هستند، مسائل چند هدفي مينامند. سادهترين راه در برخورد با اين گونه مسائل، تشكيل يك تابع هدف جديد به صورت تركيب خطي توابع هدف اصلي است كه در اين تركيب ميزان اثرگذاري هر تابع با وزن اختصاص يافته به آن مشخص ميشود. هر مسأله بهينهسازي داراي تعدادي متغير مستقل است كه آنها را متغيرهاي طراحي مینامند كه با بردار n بعدي x نشان داده ميشوند.
هدف از بهينهسازي تعيين متغيرهاي طراحي است، به گونهاي كه تابع هدف كمينه يا بيشينه شود.
مسائل مختلف بهينهسازي به دو دسته زير تقسيم ميشود:
2
4
الف) مسائل بهينهسازي بيمحدوديت: در اين مسائل هدف، بيشينه يا كمينه كردن تابع هدف بدون هر گونه محدوديتي بر روي متغيرهاي طراحي ميباشد.
ب) مسائل بهينهسازي با محدوديت: بهينهسازي در اغلب مسائل كاربردي، با توجه به محدوديتهايي صورت ميگيرد؛ محدوديتهايي كه در زمينه رفتار و عملكرد يك سيستم ميباشد و محدوديتهاي رفتاري و محدوديتهايي كه در فيزيك و هندسه مسأله وجود دارد، محدوديتهاي هندسي يا جانبي ناميده ميشوند.
معادلات معرف محدوديتها ممكن است به صورت مساوي يا نامساوي باشند كه در هر مورد، روش بهينهسازي متفاوت ميباشد. به هر حال محدوديتها، ناحيه قابل قبول در طراحي را معين ميكنند.
به طور كلي مسائل بهينهسازي با محدوديت را ميتوان به صورت زير نشان داد:
Minimize or Maximize : F(X) (1-1 )
Subject to : I = 1,2,3,…,p
j = 1,2,3,…,q
k = 1,2,3,…,n