دانلود مقاله در مورد مثلثات و توابع مثلثاتي
دسته بندي :
مقاله »
مقالات فارسی مختلف
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 32 صفحه
قسمتی از متن word (..doc) :
2
مثلثات و توابع مثلثاتي
مطالعه روی زوایا و روابط موجود میان زوایای اشکال مسطح و سه بعدی مثلثات نامیده میشود.تابع مثلثاتی از قبیل سینوس و کسینوس توابعی هستند که بوسیله روابط هندسی تعریف میشوند.
تاریخچه
اولین کسانی که از مثلثات استفاده میکردند یونانیان بودند.در یونان قدیم از مثلثات برای تعیین طول مدت روز یا طول سال (با مشخص کردن موقعیت ستارگان در آسمان)استفاده میشد.بعدها ریاضیدانان و منجمان هندی نیز پیشرفتهایی در مثلثات بدست آوردند ولی پیشرفت این علم مدیون دانشمندان مسلمان است .مسلمانان اصلیترین نقش را در پیشرفت این علم ایفا کردند و سپس این اندوختهها را در قرون وسطی به اروپاییان منتقل کردند. اروپاییان نیز دانش فراوان مسلمانان در مثلثات استفاده کردند و این علم را توسعه داده و به شکل امروزی در آوردند.
کاربردها
علم مثلثات در نجوم کاربرد فراوانی دارد و ازآن برای اندازهگیری فواصل بین ستارگان استفاده میشود. همچنین در طراحی سیستمهای ماهواره ای از مثلثات استفاده فراوانی میشود.در دریانوردی نیز از مثلثات برای تشخیص جهتهای جغرافیایی کمک گرفته میشود.امروزه از مثلثات در شاخه های مختلف فیزیک ماننداپتیک ، اکوستیک ، در تحلیل بازارهای مالی، الکترونیک ، معماری ، اقیانوس شناسی ، مکانیک ، بلور شناسی ، ژئودزی ، عمران و اقتصاد استفاده فراوانی میشود.
2
مثلثات مطالعه اندازه گیری زاویه است. اما این سخن به معنی اندازه گیری مقدماتی زاویه در هندسه نیست که در آن مقدار زاویه مورد نظر هر یک نقاله خوانده می شود بلکه محاسبه با توابع خاصی است که بستگی به زوایا دارند و به علت کابردشان در مثلثات، توابع مثلثاتی نامیده
می شوند.
تابع مثلثاتی
علوم ریاضی
مثلثات مطالعه اندازه گیری زاویه است. اما این سخن به معنی اندازه گیری مقدماتی زاویه در هندسه نیست که در آن مقدار زاویه مورد نظر هر یک نقاله خوانده می شود بلکه محاسبه با توابع خاصی است که بستگی به زوایا دارند و به علت کابردشان در مثلثات، توابع مثلثاتی نامیده
می شوند.
3
تعریف روی مثلث قائم الزاویه
برای تعریف توابع مثلثاتی از یک مثلث قائم الزاویه استفاده می کنیم به عنوان مثال می خواهیم این توابع را برای زاویه A در شکل روبرو تعریف کنیم
ما برای استفاده از این مثلث نامگذاری زیر را انجام می دهیم.
وتر ضلعی است که روبروی زاویه قائم قرار دار که بلندترین ضلع مثلث نیز می باشد و آن را با h نشان داده شده است.
ضلع مقابل زاویه A که آن را با a نشان می دهیم.
ضلع مجاور زاویه قائمه که درشکل با b نشان داده شده است.
حال توابع مثلثاتی را برای زاویه A روی مثلث ABC تعریف می کنیم.
sin: نسبت ضلع مقابل به وتر را سینوس می گویند یعنی:
cos: نسبت ضلع مجاور به وتر را گویند یعنی داریم:
4
tangent: نسبت ضلع مقابل زاویه به ضلع مجاور را گویند.
cosecant: نسبت وتر به ضلع مقابل زاویه را گویند.
secant: نسبت وتر به ضلع مجاور است
cotangent: نسبت ضلع مجاور به ضلع مقابل را گویند.
تعریف روی دایره واحد